
Chapter 1

Introduction and Overview

When one admits that nothing is certain one must, I think, also add that some things are
more nearly certain than others.

—Bertrand Russell

It is not certain that everything is uncertain.

—Blaise Pascal

Uncertainty is a fundamental—and unavoidable—feature of daily life. In order to deal
with uncertainty intelligently, we need to be able to represent it and reason about it.
How to do that is what this book is about.

Reasoning about uncertainty can be subtle. If it weren’t, this book would be much
shorter. The puzzles and problems described in the next section hint at some of the
subtleties.

1.1 Some Puzzles and Problems

The second-ace puzzle A deck has four cards: the ace and deuce of hearts, and the
ace and deuce of spades. After a fair shuffle of the deck, two cards are dealt to Alice.
It is easy to see that, at this point, there is a probability of 1/6 that Alice has both aces,
a probability of 5/6 that Alice has at least one ace, a probability of 1/2 that Alice has
the ace of spades, and a probability of 1/2 that Alice has the ace of hearts: of the six
possible deals of two cards out of four, Alice has both aces in one of them, at least one
ace in five of them, the ace of hearts in three of them, and the ace of spades in three of
them. (For readers unfamiliar with probability, there is an introduction in Chapter 2.)
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Alice then says, “I have an ace.” Conditioning on this information (by discarding
the possibility that Alice was dealt no aces), Bob computes the probability that Alice
holds both aces to be 1/5. This seems reasonable. The probability, according to Bob,
of Alice having two aces goes up if he learns that she has an ace. Next, Alice says,
“I have the ace of spades.” Conditioning on this new information, Bob now computes
the probability that Alice holds both aces to be 1/3. Of the three deals in which Alice
holds the ace of spades, she holds both aces in one of them. As a result of learning not
only that Alice holds at least one ace, but that the ace is actually the ace of spades, the
conditional probability that Alice holds both aces goes up from 1/5 to 1/3. But suppose
that Alice had instead said, “I have the ace of hearts.” It seems that a similar argument
again shows that the conditional probability that Alice holds both aces is 1/3.

Is this reasonable? When Bob learns that Alice has an ace, he knows that she
must have either the ace of hearts or the ace of spades. Why should finding out which
particular ace it is raise the conditional probability of Alice having two aces? Put another
way, if this probability goes up from 1/5 to 1/3 whichever ace Alice says she has, and
Bob knows that she has an ace, then why isn’t it 1/3 all along?

The Monty Hall puzzle The Monty Hall puzzle is very similar to the second-ace
puzzle. Suppose that you’re on a game show and given a choice of three doors. Behind
one is a car; behind the others are goats. You pick door 1. Before opening door 1, host
Monty Hall (who knows what is behind each door) opens door 3, which has a goat. He
then asks you if you still want to take what’s behind door 1, or to take instead what’s
behind door 2. Should you switch? Assuming that, initially, the car was equally likely
to be behind each of the doors, naive conditioning suggests that, given that it is not
behind door 3, it is equally likely to be behind door 1 and door 2, so there is no reason
to switch. On the other hand, the car is equally likely to be behind each of the doors.
If it is behind door 1, then you clearly should not switch; but if it is not behind door 1,
then it must be behind door 2 (since it is obviously not behind door 3), and you should
switch to door 2. Since the probability that it is behind door 1 is 1/3, it seems that, with
probability 2/3, you should switch. But if this reasoning is correct, then why exactly is
the original argument incorrect?

The second-ace puzzle and the Monty Hall puzzle are the stuff of puzzle books.
Nevertheless, understanding exactly why naive conditioning does not give reasonable
answers in these cases turns out to have deep implications, not just for puzzles, but for
important statistical problems.

The two-coin problem Suppose that Alice has two coins. One of them is fair, and
so has equal likelihood of landing heads and tails. The other is biased, and is twice as
likely to land heads as to land tails. Alice chooses one of her coins (assume she can tell
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There is clearly some ambiguity in the presentation of this problem (far more than,
say, in the presentation of the second-ace puzzle). For example, there is no indication of
what other options the doctor has. Even if this ambiguity is ignored, this problem raises
a number of issues. An obvious one is how the doctor’s statistical information should
affect his beliefs regarding what to do. There are many others though. For example,
what does it mean that the doctor has “no other relevant information”? Typically the
doctor has a great deal of information, and part of the problem lies in deciding what is
and is not relevant. Another issue is perhaps more pragmatic. How should the doctor’s
information be represented? If the doctor feels that the fact that Eric has red hair is
irrelevant to the question of whether he has hepatitis, how should that be represented?

In many cases, there is no quantitative information, only qualitative information. For
example, rather than knowing that 90 percent of people with jaundice have hepatitis and
80 percent of people with hepatitis have a temperature, the doctor may know only that
people with jaundice typically have hepatitis, and people with hepatitis typically have
a temperature. How does this affect things?

1.2 An Overview of the Book

I hope that the puzzles and problems of the preceding section have convinced you that
reasoning about uncertainty can be subtle and that it requires a careful formal analysis.

So how do we reason about uncertainty? The first step is to appropriately represent
the uncertainty. Perhaps the most common representation of uncertainty uses probabil-
ity, but it is by no means the only one, and not necessarily always the best one. Motivated
by examples like the earlier one about a coin with unknown bias, many other represen-
tations have been considered in the literature. In Chapter 2, which sets the stage for all
the later material in the book, I examine a few of them. Among these are probability,
of course, but also Dempster-Shafer belief functions, possibility measures, and ranking
functions. I also introduce a very general representation of uncertainty called plausi-
bility measures; all the other representations of uncertainty considered in this book can
be viewed as special cases of plausibility measures. Plausibility measures provide a
vantage point from which to understand basic features of uncertainty representation. In
addition, general results regarding uncertainty can often be formulated rather elegantly
in terms of plausibility measures.

An agent typically acquires new information all the time. How should the new
information affect her beliefs? The standard way of incorporating new information
in probability theory is by conditioning. This is what Bob used in the second-ace
puzzle to incorporate the information he got from Alice, such as the fact that she
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holds an ace or that she holds the ace of hearts. This puzzle already suggests that
there are subtleties involved with conditioning. Things get even more complicated if
uncertainty is not represented using probability, or if the new information does not
come in a nice package that allows conditioning. (Consider, e.g., information like
“people with jaundice typically have hepatitis.”) Chapter 3 examines conditioning in the
context of probability and considers analogues of conditioning for the representations
of uncertainty discussed in Chapter 2. It also considers generalizations of conditioning,
such as Jeffrey’s Rule, that apply even when the new information does not come in the
form to which standard conditioning can be applied. A more careful examination of
when conditioning is appropriate (and why it seems to give unreasonable answers in
problems like the second-ace puzzle) is deferred to Chapter 6.

Chapter 4 considers a related topic closely related to updating: independence. People
seem to think in terms of dependence and independence when describing the world.
Thinking in terms of dependence and independence also turns out to be useful for
getting a well-structured and often compact representation of uncertainty called a
Bayesian network. While Bayesian networks have been applied mainly in the context of
probability, in Chapter 4 I discuss general conditions under which they can be applied
to uncertainty represented in terms of plausibility. Plausibility measures help explain
what it is about a representation of uncertainty that allows it to be represented in terms
of a Bayesian network.

Chapter 5 considers expectation, another significant notion in the context of proba-
bility. I consider what the analogue of expectation should be for various representations
of uncertainty. Expectation is particularly relevant when it comes to decision making in
the presence of uncertainty. The standard rule—which works under the assumption that
uncertainty is represented using probability, and that the “goodness” of an outcome is
represented in terms of what is called utility—recommends maximizing the expected
utility. Roughly speaking, this is the utility the agent expects to get (i.e., how happy
the agent expects to be) on average, given her uncertainty. This rule cannot be used
if uncertainty is not represented using probability. Not surprisingly, many alternative
rules have been proposed. Plausibility measures prove useful in understanding the al-
ternatives. It turns out that all standard decision rules can be viewed as a plausibilistic
generalization of expected utility maximization.

All the approaches to reasoning about uncertainty considered in Chapter 2 consider
the uncertainty of a single agent, at a single point in time. Chapter 6 deals with more
dynamic aspects of belief and probability; in addition, it considers interactive situations,
where there are a number of agents, each reasoning about each other’s uncertainty. It
introduces the multi-agent systems framework, which provides a natural way to model
time and many agents. The framework facilitates an analysis of the second-ace puzzle.
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It turns out that in order to represent the puzzle formally, it is important to describe the
protocol used by Alice. The protocol determines the set of runs, or possible sequences
of events that might happen. The key question here is what Alice’s protocol says to do
after she has answered “yes” to Bob’s question as to whether she has an ace. Roughly
speaking, if her protocol is “if I have the ace of spades, then I will say that, otherwise
I will say nothing,” then 1/3 is indeed Bob’s probability that Alice has both aces. This
is the conditional probability of Alice having both aces given that she has the ace of
spades. On the other hand, suppose that her protocol is “I will tell Bob which ace I have;
if I have both, I will choose at random between the ace of hearts and the ace of spades.”
Then, in fact, Bob’s conditional probability should not go up to 1/3 but should stay at
1/5. The different protocols determine different possible runs and so result in different
probability spaces. In general, it is critical to make the protocol explicit in examples
such as this one.

In Chapter 7, I consider formal logics for reasoning about uncertainty. This may
seem rather late in the game, given the title of the book. However, I believe that there
is no point in designing logics for reasoning about uncertainty without having a deep
understanding of various representations of uncertainty and their appropriateness. The
term “formal logic” as I use it here means a syntax or language—that is, a collection of
well-formed formulas, together with a semantics—which typically consists of a class
of structures, together with rules for deciding whether a given formula in the language
is true or false in a world in a structure.

But not just any syntax and semantics will do. The semantics should bear a clear
and natural relationship to the real-world phenomena it is trying to model, and the
syntax should be well-suited to its purpose. In particular, it should be easy to render
the statements one wants to express as formulas in the language. If this cannot be done,
then the logic is not doing its job. Of course, “ease,” “clarity,” and “naturalness” are in
the eye of the beholder. To complicate the matter, expressive power usually comes at a
price. A more expressive logic, which can express more statements, is typically more
complex than a less expressive one. This makes the task of designing a useful logic,
or choosing among several preexisting candidates, far more of an art than a science,
and one that requires a deep understanding of the phenomena that we are reasoning
about.

In any case, in Chapter 7, I start with a review of propositional logic, then consider
a number of different propositional logics for reasoning about uncertainty. The appro-
priate choice depends in part on the underlying method for representing uncertainty.
I consider logics for each of the methods of representing uncertainty discussed in the
preceding chapters.

Chapter 8 deals with belief, defaults, and counterfactuals. Default reasoning in-
volves reasoning about statements like “birds typically fly” and “people with hepatitis
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now, I just consider how sets of probabilities can be used to deal with the three-prisoners
puzzle.

Example 3.3.1 The three-prisoners puzzle is an old chestnut that is somewhat sim-
ilar in spirit to the second-ace puzzle discussed in Chapter 1, although it illustrates
somewhat different issues.

Of three prisoners a , b, and c, two are to be executed, but a does not know which.
He therefore says to the jailer, “Since either b or c is certainly going to be executed,
you will give me no information about my own chances if you give me the name
of one man, either b or c, who is going to be executed.” Accepting this argument,
the jailer truthfully replies, “b will be executed.” Thereupon a feels happier because
before the jailer replied, his own chance of execution was 2/3, but afterward there
are only two people, himself and c, who could be the one not executed, and so his
chance of execution is 1/2.

Note that in order for a to believe that his own chance of execution was 2/3 before
the jailer replied, he seems to be implicitly assuming the principle of indifference.
A straightforward application of the principle of indifference also seems to lead to
a’s believing that his chances of execution goes down to 1/2 after hearing the jailer’s
statement. Yet it seems that the jailer did not give him any new relevant information.
Is a justified in believing that his chances of avoiding execution have improved? If
so, it seems that a would be equally justified in believing that his chances of avoiding
execution would have improved if the jailer had said “c will be executed.” It seems that
a’s prospects improve no matter what the jailer says! That does not seem quite right.

The principle of indifference is implicitly being applied here to a space consisting
of three worlds—say wa , wb , and wc—where in world wx , prisoner x is pardoned. But
this representation of a world does not take into account what the jailer says. Perhaps
a better representation of a possible situation is as a pair (x , y), where x , y ∈ {a , b, c}.
Intuitively, a pair (x , y) represents a situation where x is pardoned and the jailer
says that y will be executed in response to a’s question. Since the jailer answers
truthfully, x ̸= y; since the jailer will never tell a directly that a will be executed, y ̸= a.
Thus, the set of possible worlds is {(a , b), (a , c), (b, c), (c, b)}. The event lives -a—a

lives—corresponds to the set {(a , b), (a , c)}. Similarly, the events lives -b and lives -c
correspond to the sets {(b, c)} and {(c, b)}, respectively. Assume in accord with the
principle of indifference that each prisoner is equally likely to be pardoned, so that
each of these three events has probability 1/3.

The event says-b—the jailer says b—corresponds to the set {(a , b), (c, b)}; the
story does not give a probability for this event. To do standard probabilistic condition-



3.3 Conditioning with Sets of Probabilities 83

ing, this set must be measurable and have a probability. The event {(c, b)} (lives-c) has
probability 1/3. But what is the probability of {(a , b)}? That depends on the jailer’s
strategy in the one case where he has a choice, namely, when a lives. He gets to choose
between saying b and c in that case. The probability of (a , b) depends on the probability
that he says b if a lives; that is, µ(says-b | lives-a).

If the jailer applies the principle of indifference in choosing between saying b and c if
a is pardoned, so that µ(says-b | lives-a) = 1/2, then µ({(a , b)}) = µ({(a , c)}) = 1/6,
and µ(says-b) = 1/2. With this assumption,

µ(lives-a | says-b) = µ(lives-a ∩ says-b)/µ(says-b) = (1/6)/(1/2) = 1/3.

Thus, if µ(says-b) = 1/2, the jailer’s answer does not affect a’s probability.
Suppose more generally that µα , 0 ≤ α ≤ 1, is the probability measure such that

µα(lives-a) = µα(lives-b) = µα(lives-c) = 1/3 and µα(says-b | lives-a) = α. Then
straightforward computations show that

µα({(a , b)}) = µα(lives-a) × µα(says-b | lives-a) = α/3,

µα(says-b) = µα({(a , b)}) + µα({(c, b)}) = (α + 1)/3, and

µα(lives-a | says-b) = α/3
(α + 1)/3

= α/(α + 1).

Thus, µ1/2 = µ. Moreover, if α ̸= 1/2 (i.e., if the jailer had a particular preference for
answering either b or c when a was the one pardoned), then a’s probability of being
executed would change, depending on the answer. For example, if α = 0, then if a is
pardoned, the jailer will definitely say c. Thus, if the jailer actually says b, then a knows
that he is definitely not pardoned, that is, µ0(lives-a | says-b) = 0. Similarly, if α = 1,
then a knows that if either he or c is pardoned, then the jailer will say b, while if b

is pardoned the jailer will say c. Given that the jailer says b, from a’s point of view
the one pardoned is equally likely to be him or c; thus, µ1(lives-a | says-b) = 1/2. In
fact, it is easy to see that if PJ = {µα : α ∈ [0, 1]}, then (PJ |says-b)∗(lives-a) = 0 and
(PJ |says-b)∗(lives-a) = 1/2.

To summarize, the intuitive answer—that the jailer’s answer gives a no
information—is correct if the jailer applies the principle of indifference in the one
case where he has a choice in what to say, namely, when a is actually the one to live.
If the jailer does not apply the principle of indifference in this case, then a may gain
information. On the other hand, if a does not know what strategy the jailer is using
to answer (and is not willing to place a probability on these strategies), then his prior
point probability of 1/3 “diffuses” to an interval.


