The second-ace puzzle A deck has four cards: the ace and deuce of hearts, and the
ace and deuce of spades. After a fair shuffle of the deck, two cards are dealt to Alice.
It is easy to see that, at this point, there is a probability of 1/6 that Alice has both aces,
a probability of 5/6 that Alice has at least one ace, a probability of 1/2 that Alice has
the ace of spades, and a probability of 1/2 that Alice has the ace of hearts: of the six
possible deals of two cards out of four, Alice has both aces in one of them, at least one
ace in five of them, the ace of hearts in three of them, and the ace of spades in three of
them. (For readers unfamiliar with probability, there is an introduction in Chapter 2.)



Alice then says, “I have an ace.” Conditioning on this information (by discarding
the possibility that Alice was dealt no aces), Bob computes the probability that Alice
holds both aces to be 1/5. This seems reasonable. The probability, according to Bob,
of Alice having two aces goes up if he learns that she has an ace. Next, Alice says,
“I have the ace of spades.” Conditioning on this new information, Bob now computes
the probability that Alice holds both aces to be 1/3. Of the three deals in which Alice
holds the ace of spades, she holds both aces in one of them. As a result of learning not
only that Alice holds at least one ace, but that the ace is actually the ace of spades, the
conditional probability that Alice holds both aces goes up from 1/5 to 1/3. But suppose
that Alice had instead said, “I have the ace of hearts.” It seems that a similar argument
again shows that the conditional probability that Alice holds both aces is 1/3.

Is this reasonable? When Bob learns that Alice has an ace, he knows that she
must have either the ace of hearts or the ace of spades. Why should finding out which
particular ace it is raise the conditional probability of Alice having two aces? Put another
way, if this probability goes up from 1/5 to 1/3 whichever ace Alice says she has, and
Bob knows that she has an ace, then why isn’t it 1/3 all along?

The Monty Hall puzzle The Monty Hall puzzle is very similar to the second-ace
puzzle. Suppose that you’re on a game show and given a choice of three doors. Behind
one is a car; behind the others are goats. You pick door 1. Before opening door 1, host
Monty Hall (who knows what is behind each door) opens door 3, which has a goat. He
then asks you if you still want to take what’s behind door 1, or to take instead what’s
behind door 2. Should you switch? Assuming that, initially, the car was equally likely
to be behind each of the doors, naive conditioning suggests that, given that it is not
behind door 3, it is equally likely to be behind door 1 and door 2, so there is no reason
to switch. On the other hand, the car is equally likely to be behind each of the doors.
If it is behind door 1, then you clearly should not switch; but if it is not behind door 1,
then it must be behind door 2 (since it is obviously not behind door 3), and you should
switch to door 2. Since the probability that it is behind door 1 is 1/3, it seems that, with
probability 2/3, you should switch. But if this reasoning is correct, then why exactly is
the original argument incorrect?

The second-ace puzzle and the Monty Hall puzzle are the stuff of puzzle books.
Nevertheless, understanding exactly why naive conditioning does not give reasonable
answers in these cases turns out to have deep implications, not just for puzzles, but for
important statistical problems.



An agent typically acquires new intormation all the time. How should the new
information affect her beliefs? The standard way of incorporating new information
in probability theory is by conditioning. This is what Bob used in the second-ace
puzzle to incorporate the information he got from Alice, such as the fact that she



holds an ace or that she holds the ace of hearts. This puzzle already suggests that
there are subtleties involved with conditioning. Things get even more complicated if
uncertainty is not represented using probability, or if the new information does not
come in a nice package that allows conditioning. (Consider, e.g., information like
“people with jaundice typically have hepatitis.”) Chapter 3 examines conditioning in the



It turns out that in order to represent the puzzle formally, it is important to describe the
protocol used by Alice. The protocol determines the set of runs, or possible sequences
of events that might happen. The key question here is what Alice’s protocol says to do
after she has answered “yes” to Bob’s question as to whether she has an ace. Roughly
speaking, if her protocol is “if I have the ace of spades, then I will say that, otherwise
I will say nothing,” then 1/3 is indeed Bob’s probability that Alice has both aces. This
is the conditional probability of Alice having both aces given that she has the ace of
spades. On the other hand, suppose that her protocol is “I will tell Bob which ace I have;
if I have both, I will choose at random between the ace of hearts and the ace of spades.”
Then, in fact, Bob’s conditional probability should not go up to 1/3 but should stay at
1/5. The different protocols determine different possible runs and so result in different
probability spaces. In general, it is critical to make the protocol explicit in examples
such as this one.



4. Their captors have decided that two of three prisoners—Smith, Jones, and
Fitch—will be executed tomorrow. The choice has been made at random, but the
identity of the unfortunate selectees is to be kept from the prisoners until the final
hour. The prisoners, who are held in separate cells, unable to communicate with
each other, know this. Fitch asks a guard to tell the name of one of the other pris-
oners who will be executed. Regardless of whether Fitch was chosen or not, one
of the others will be executed, so the guard reasons that he is not giving Fitch any
illicit information by answering truthfully. He says: “Jones will be executed.” Fitch
is heartened by the news for he reasons that his probability of being the one who
escapes execution has risen from % 3 to 2 Has Fitch made a mistake? Has the
guard? Use Bayes’ theorem to analyze the reasoning involved. (Hint: Calculate



the probability that Fitch will not be executed given that the guard tells him that
Jones will be executed, not the probability that Fitch will not be executed given
that Jones will be. What assumptions are possible about the probability that the
guard tells Fitch that Jones will be executed given that Fitch escapes execution?)



4. F = “Fitch will not be executed”
] = “Jones will not be executed”
S = “Smith will not be executed”

G = “Guard tells Fitch that Jones will be executed”

According to the problem, Pr(F) = Pr(]) = Pr(S) = % We need to cal-
culate Pr(F given G). Using Bayes’ theorem:

Pr(F) - Pr(G given F)

Pr(F)- Pr(G given F) + Pr(])- Pr(G given ])
+ Pr(S) - Pr(G given S)

Pr(F given G) =

The guard is said to be truthful, so Pr(G given J) = 0. What is Pr(G
given S)? If Smith will not be executed, then Fitch and Jones will both
be executed. But the guard cannot tell Fitch that he will be executed,
so in this case he must tell him that Jones will be executed. So Pr(G
given S) = 1. So far:

(%) - Pr(G given F)
(%)-Pr(G given F) + (%)

Pr(F given G) =

Everything turns on Pr(G given F). If Fitch will not be executed, Jones
and Smith will be. Will the guard, in this case, say “Jones” or Smith?”
The problem gives no reason why he should prefer one rather than an-
other, so he might flip a fair coin, in which case Pr(G given F) = %
Then Pr(F given G) = (%)/(%) = %, and Fitch has no better prospects
than before.

On the other hand, you might imagine that the guard has special
reasons to say “Jones” in this case, so that Pr(F given G) = 1. If so,



Fitch has good news, for then: Pr(F given G) = (%)/(%) = % But you

might just as well imagine that the guard has special reasons to say
“Smith” in this case, so that Pr(F given G) = 0. If so, Fitch has bad

news, for then Pr(F given G) = 0!
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now, I just consider how sets of probabilities can be used to deal with the three-prisoners
puzzle.

Example 3.3.1 The three-prisoners puzzle is an old chestnut that is somewhat sim-
ilar in spirit to the second-ace puzzle discussed in Chapter 1, although it illustrates
somewhat different issues.

Of three prisoners a, b, and c, two are to be executed, but a does not know which.
He therefore says to the jailer, “Since either b or c is certainly going to be executed,
you will give me no information about my own chances if you give me the name
of one man, either b or ¢, who is going to be executed.” Accepting this argument,
the jailer truthfully replies, “b will be executed.” Thereupon a feels happier because
before the jailer replied, his own chance of execution was 2/3, but afterward there
are only two people, himself and ¢, who could be the one not executed, and so his
chance of execution is 1/2.

Note that in order for a to believe that his own chance of execution was 2/3 before
the jailer replied, he seems to be implicitly assuming the principle of indifference.
A straightforward application of the principle of indifference also seems to lead to
a’s believing that his chances of execution goes down to 1/2 after hearing the jailer’s
statement. Yet it seems that the jailer did not give him any new relevant information.
Is a justified in believing that his chances of avoiding execution have improved? If
S0, it seems that a would be equally justified in believing that his chances of avoiding
execution would have improved if the jailer had said “c will be executed.” It seems that
a’s prospects improve no matter what the jailer says! That does not seem quite right.

The principle of indifference is implicitly being applied here to a space consisting
of three worlds—say w,,, w,, and w.—where in world w,, prisoner x is pardoned. But
this representation of a world does not take into account what the jailer says. Perhaps
a better representation of a possible situation is as a pair (x, y), where x, y € {a, b, c}.
Intuitively, a pair (x, y) represents a situation where x is pardoned and the jailer
says that y will be executed in response to a’s question. Since the jailer answers
truthfully, x # y; since the jailer will never tell a directly that a will be executed, y # a.
Thus, the set of possible worlds is {(a, b), (a, ¢), (b, c¢), (c, b)}. The event lives -a—a
lives—corresponds to the set {(a, b), (a, ¢)}. Similarly, the events lives -b and lives -c
correspond to the sets {(b, c)} and {(c, b)}, respectively. Assume in accord with the
principle of indifference that each prisoner is equally likely to be pardoned, so that
each of these three events has probability 1/3.

The event says-b—the jailer says b—corresponds to the set {(a, b), (c, b)}; the
story does not give a probability for this event. To do standard probabilistic condition-
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ing, this set must be measurable and have a probability. The event {(c, b)} (lives-c) has
probability 1/3. But what is the probability of {(a, b)}? That depends on the jailer’s
strategy in the one case where he has a choice, namely, when a lives. He gets to choose
between saying b and c in that case. The probability of (a, b) depends on the probability
that he says b if a lives; that is, u(says-b | lives-a).

If the jailer applies the principle of indifference in choosing between saying b and c if
a is pardoned, so that u(says-b | lives-a) = 1/2, then u({(a, b)}) = n({(a, c)}) = 1/6,
and p(says-b) = 1/2. With this assumption,

u(lives-a | says-b) = pu(lives-a N says-b)/u(says-b) = (1/6)/(1/2) = 1/3.

Thus, if w(says-b) = 1/2, the jailer’s answer does not affect a’s probability.

Suppose more generally that ¢, , 0 <« < 1, is the probability measure such that
Wy (lives-a) = g (lives-b) = py (lives-c) = 1/3 and p, (says-b | lives-a) = «. Then
straightforward computations show that

Ue{(a, b)) = p,lives-a) x uy(says-b | lives-a) =a/3,
Ra(says-b) = uy({(a, b)Y + ue({(c, b)}) = (@ + 1)/3, and
o/3
@+1)/3

Thus, 1/, = w. Moreover, if a # 1/2 (i.e., if the jailer had a particular preference for
answering either b or ¢ when a was the one pardoned), then a’s probability of being
executed would change, depending on the answer. For example, if @ = 0, then if a is
pardoned, the jailer will definitely say c. Thus, if the jailer actually says b, then a knows
that he is definitely not pardoned, that is, iy (lives-a | says-b) = 0. Similarly, if @ = 1,
then a knows that if either he or c is pardoned, then the jailer will say b, while if b
is pardoned the jailer will say c. Given that the jailer says b, from a’s point of view
the one pardoned is equally likely to be him or c; thus, u(lives-a | says-b) = 1/2. In
fact, it is easy to see that if P; = {u,, :a € [0, 1]}, then (P |says-b), (lives-a) =0 and
(Pslsays-b)*(lives-a) = 1/2.

To summarize, the intuitive answer—that the jailer’s answer gives a no
information—is correct if the jailer applies the principle of indifference in the one
case where he has a choice in what to say, namely, when a is actually the one to live.
If the jailer does not apply the principle of indifference in this case, then a may gain
information. On the other hand, if @ does not know what strategy the jailer is using
to answer (and is not willing to place a probability on these strategies), then his prior
point probability of 1/3 “diffuses” to an interval. &

Uy (lives-a | says-b) = =ao/(a+1).



