7/11/2016 notes-day-1.txt

Outline of NASSLLI course.
Sources:
NYU course wiki:
http://lambda.jimpryor.net
Github reposittory for ESSLLI course taught by CB and Dylan:
https://github.com/dylnb/essl1i2015-monads

CB & JP:
Introduction
Big Picture and goals
Theoretical computer science ==> {philosophy, linguistics}
Monads ==> compositional semantics that tracks...
...intensionality (cf. Winter and Ben-Avi
...binding
...mutability
...meta discourse
Modularity, factoring, clean design,
Attitude, not a technique or program---
a way of abstractly describing some things you already do
Specific goal for this course: re-engineering of a fragment due to
Groenendijk, Stokhof and Veltman for dynamic semantics with "might"

Plan:
Day 1: Types
Day 2: Functional programming
Day 3: GSV straight up
Day 4: monads
Day 5: GSV monadicized

Day 1: Introduction, declarative model of computationa, lambda, simple types, system F

JP: declarative model of computation vs. sequence of directives

2 +3<7

2 + 3

2

regex patter == set of strings that match

sets of equations in 2 vars == set of assignments that make it true

CB:

Predicate Calculus
Var = x |y | z
Cons =a | b | c
Pred = left | slept
Rel saw | loved
Ind = Var | Cons ; traditionally "Term"; need "term" for lambda
For Pred Ind | Rel Ind Ind | For and For | For or For | not For | \exists For |

\forall For

Types: Ind has type e individuals
For has type t truth values
Pred has type e -> t fn from ind to tv (set of ind)

Rel has type e -> (e -> t) fn from ind to e -> t

lambda calculus
http://lambda.jimpryor.net/topics/week2_lambda_intro/

Term = Var ; variable VALUE
| (\lambda Var Term) ; abstract VALUE
| (Term Term) ; application PROGRAM

file:///home/chronos/u-f131d23076f61f0a568ecd8a72c85918cab21e58/Downloads/notes-day-1.txt 1/3

7/11/2016 notes-day-1.txt

X, \X.X, \X.y, \xX\y.x, \x.(y (\x.x)), \X.xx

Details: Lucas Champollion tutorital on the Lambda Calculator
7:15 Monday evening, Milledoler 100

Beta reduction: ((\lambda Var Body) Arg) ~~> Body{Var <- Arg}

((\x.x) x)
((\x.y) x)
((\x.y) y)
(CO\X\y.xy) x) vy)
(CONX\Y.yx) x) vy)

[alpha reduction, variable collision: see Champollion tutorial Mon 7pm]

simply-typed lambda calculus
http://lambda.jimpryor.net/topics/week5_simply_typed/

Types: Type = e | t | Type -> Type

Var can have any type
(\lambda a b) has type a -> b fn; set of ordered pairs
(a->b a) has type b fn/arg application

[which examples can't be typed?]
strongly normalizing (with a view towards black-box side effects)
Proof: www.mpi-sws.org/~dg/teaching/pt2012/sn.pdf

denotational semantics with functions as sets of ordered pairs
JP:

polymorphism: identity functions

conjunction = product types?

Apply type operators

Day 2: Functional programming

Day 3: GSV straight up

Reading: Groenendijk, Stokhof, and Veltman, "Coreference and Modality" (1996)

http://lambda.jimpryor.net/readings/coreference-and-modality.pdf
NYU course:
http://lambda.jimpryor.net/topics/week10_gsv/
ESSLLI course:
https://github.com/dylnb/ess11i2015-monads/tree/master/gsv
Notes on GSV, with links to code
http://lambda.jimpryor.net/topics/week10_gsv/

Day 4: monads
Safe division, intensionalization, ?mutability

Ken Shan Monads for natural language semantics (2001) uses reader monad to implement

intensionality.
http://arxiv.org/abs/cs/0205026v1

Ben-Avi and Winter A modular approach to intensionality (2007) reinvents the technique.

http://parles.upf.es/glif/pub/subll/individual/bena_wint.pdf
monad stacking, monad transformers

Day 5: GSV re-engineered with monads

file:///home/chronos/u-f131d23076f61f0a568ecd8a72c85918cab21e58/Downloads/notes-day-1.txt

2/3

7/11/2016 notes-day-1.txt

file:///home/chronos/u-f131d23076f61f0a568ecd8a72c85918cab21e58/Downloads/notes-day-1.txt 3/3

