7/11/2016 notes-day-1.txt

```
Outline of NASSLLI course.
  Sources:
    NYU course wiki:
      http://lambda.jimpryor.net
    Github reposittory for ESSLLI course taught by CB and Dylan:
      https://github.com/dylnb/esslli2015-monads
  CB & JP:
  Introduction
  Big Picture and goals
    Theoretical computer science ==> {philosophy, linguistics}
      Monads ==> compositional semantics that tracks...
        ...intensionality (cf. Winter and Ben-Avi
        ...binding
        ... mutability
        ...meta discourse
     Modularity, factoring, clean design,
     Attitude, not a technique or program---
        a way of abstractly describing some things you already do
    Specific goal for this course: re-engineering of a fragment due to
      Groenendijk, Stokhof and Veltman for dynamic semantics with "might"
    Plan:
      Day 1: Types
      Day 2: Functional programming
      Day 3: GSV straight up
      Day 4: monads
      Day 5: GSV monadicized
Day 1: Introduction, declarative model of computationa, lambda, simple types, system F
  JP: declarative model of computation vs. sequence of directives
    2 + 3 < 7
    2 + 3
    regex patter == set of strings that match
    sets of equations in 2 vars == set of assignments that make it true
  CB:
    Predicate Calculus
     Var = x \mid y \mid z
     Cons = a \mid b \mid c
     Pred = left | slept
     Rel = saw | loved
      Ind = Var | Cons ; traditionally "Term"; need "term" for lambda
      For = Pred Ind | Rel Ind Ind | For and For | For or For | not For | \exists For |
\forall For
    Types: Ind has type e
                                     individuals
          For has type t
                                     truth values
          Rel has type e \rightarrow (e \rightarrow t) fn from ind to e \rightarrow t
    lambda calculus
      http://lambda.jimpryor.net/topics/week2_lambda_intro/
                                ; variable
   Term =
                                                VALUE
           | (\lambda Var Term) ; abstract
                                                VALUE
           | (Term Term)
                                ; application
                                                PROGRAM
```

7/11/2016 notes-day-1.txt

```
Details: Lucas Champollion tutorital on the Lambda Calculator
             7:15 Monday evening, Milledoler 100
    Beta reduction: ((\lambda Var Body) Arg) ~~> Body{Var <- Arg}</pre>
    ((\x.x) x)
    ((\x.y) x)
    ((\x.y) y)
    (((\langle x \rangle, xy), x), y)
    (((\langle x \rangle, yx), x), y)
    [alpha reduction, variable collision: see Champollion tutorial Mon 7pm]
    simply-typed lambda calculus
      http://lambda.jimpryor.net/topics/week5_simply_typed/
    Types: Type = e | t | Type -> Type
          Var can have any type
           (\lambda a b) has type a -> b
                                             fn; set of ordered pairs
           (a->b a) has type b
                                              fn/arg application
    [which examples can't be typed?]
    strongly normalizing (with a view towards black-box side effects)
      Proof: www.mpi-sws.org/~dg/teaching/pt2012/sn.pdf
    denotational semantics with functions as sets of ordered pairs
  JP:
    polymorphism: identity functions
    conjunction = product types?
   Apply type operators
Day 2: Functional programming
Day 3: GSV straight up
    Reading: Groenendijk, Stokhof, and Veltman, "Coreference and Modality" (1996)
      http://lambda.jimpryor.net/readings/coreference-and-modality.pdf
   NYU course:
      http://lambda.jimpryor.net/topics/week10_gsv/
   ESSLLI course:
      https://github.com/dylnb/esslli2015-monads/tree/master/gsv
   Notes on GSV, with links to code
      http://lambda.jimpryor.net/topics/week10_gsv/
Day 4: monads
  Safe division, intensionalization, ?mutability
  Ken Shan Monads for natural language semantics (2001) uses reader monad to implement
intensionality.
    http://arxiv.org/abs/cs/0205026v1
  Ben-Avi and Winter A modular approach to intensionality (2007) reinvents the technique.
    http://parles.upf.es/glif/pub/sub11/individual/bena_wint.pdf
  monad stacking, monad transformers
Day 5: GSV re-engineered with monads
```

7/11/2016 notes-day-1.txt