Functional Programming Techniques for Philosophy and Linguistics
Chris Barker and Jim Pryor, NASSLLI 2016
JP's Thursday Handout

Remember Polymorphic Types?
id:va.a— a (we'll usually suppress prenex va in type signatures)
id = Aa. Ax: a. x (will also suppress initial Aa, and the [type] applications)

Schematic Type Expressions
Int - a = @Readerlnt

Seta = @Set

I'll use xx and yy as variables for these.

(At one point I'll use xxx as a variable for a Izl , with the boxes understood univocally.)

Kleisli arrow types for a given |:| are:a — @

Contrast ordinary arrow types: a— PB

I'll use j and k as variables for Kleisli arrows, and f and g for functions with
ordinary types.

Endofunctors
some type operation []
and a paired function map : va p. (a — B) — |E| — @
obeying the laws:
map (id:a = a) xx = (id:@—v@)xx = XX
map (g - f) = (map g) - (map)

Example1: @Set = Set a
MaPse: : (@ — B) — [a] st — [B] s that is:
Mapg : (@ = B) = Set a — Set B
mMapge f Xx = {f x| x e xx}
So mapg, succ {2, 3, 10} = {3, 4, 11}

Example 2: @Intensionality =World = a

maplntensionality : (O' - B) - @ Intensionality ~ @ Intensionality? that is:
maplntensionality : (0. - B) - (World - Q) - (World i B)
maplntensionality f XX = }\W f (XX W)

Other names for map: fmap, <$>, liftA, liftM

Monads
some type operation []
and a paired function map : va pB. (a — B) — |E| — @ (as above)

also a paired function join : va. El — |a_|
(e.g., for [] this is U)

also a paired function f("up" or map0): va. a — |E|
(e.g., for []s.. this is singleton)

instead of map + join, you could have a single function

<=<:vapy. (B —>—>(a—>|£[)—>(a —>
compare the type of the ordinary composition operator
c:vaBy.B—v)—@—B)—@—v)
<=< is called "Kleisli composition." It plays the role for Kleisli arrow types
(@ —[B]) that - plays for ordinary arrow types (a — B).
Example:
duplicate 3 = {3, 3, 3},.uni
UptO 4= {0, 1a 2’ 3}multi
(duplicate <=< upto) 4 = join {{}, {1}, {2, 2}, {3, 3, 3} = {1, 2, 2, 3, 3, 3}

These functions (map + join + ff, or <=< +) have to obey laws, best stated as:
K'<=< (K<=<]j) = (k' <=<k) <=<j
ft<=<] =] = j<=<1
In summary, <=< is associative and f is its identity. So monads are a
generalization with polytypes of the algebraic notion of a monoid.

Interdefinitions:
j>=>Kk = K<=<]j
XX >>= ("bind") K = (K <=< id) XX = (K <=< const xx) anything = join (map k xx)
K<=<j = joine mapk-j = AX. (j X >>=K)
join Xxxx = XXX >>=id
map f xx = xx>>=Ax. ¥ (f x)
map2 f xXxxyy = XX >>= AX. yy >>=Ay. f (fxy)
Compare types:
f/map0:va. a - |E| lifts a value (nullary function) into |:|
map :vap. (a—p) - |E| - @ lifts a unary function into |:|

map2 :vapBy.a—=>p—-y — @ - @ - lifts a binary function into |:|

Other names for #/map0: n, pure, return, unit (= our Boring type), monadic id, singleton

Other names for join: p
Other names for >>=/bind: %

Monadic Layers

|E| Set is really |E| SetT (Identity) =Seta

@ Intensionality iS rea”y @ Reader World iS rea”y @ ReaderT World (Identity) = World —a
There are also monadic types like @ ReaderT World (SetT (dentty) = WWorld — Set a

@ StateT S (SetT (identity) = © — Set (A x §)
|E| SetT (StateT S (identityy = © —* (Set @) x S

Definitions for Identity Monad

@ Identity =aQ

f =id

K<=<j=Koj

XX >>= K = K xx

map = Af xx. f xx

(Note: map and >>= won't have the same definition in general: usually their types differ.)

Definitions for MaybeT Monadic Layer
type Maybe/Shortlist a = None () + One (a)

@ MaybeT (M) = M

liftT = Axx. map,, One xx

f = liftT - 1,

XX >>= K = XX >>=,, Axs. case xs of { None — 1, None | One x — k x }

Auxiliary functions for MaybeT: zero : @ ; zero = {1, None

When M = Identity: xx >>= y.,,. k = case xx of { None — None | One x — k x}
T Maybe = AX. One x

map2,.,,. = A xx yy. case (xx, yy) of {(One x, One y) — One (f x y) | else None }

Definitions for SetT Monadic Layer

E' SetT (M) = M

liftT = Axx. map,, singleton xx

ft = liftT - f,
XX >>= K = XX >>=, Axs. union,, { K x | x € xs }
where union,, : Set Vi M
uniony { } =tu{}
uniony, {bb} = bb
union,, {bb, bb’} = map2,, (u) bb bb’

union,, {bb, bb’, bb”} = map2,, (v) (map2,, (u) bb bb’) bb”

Auxiliary functions for SetT: zero : @ ;zero = 1y {}
plus : @ - @ - @ ; plus = Axx yy. map2,, (u) Xx yy
When M = Identity: xx >>=¢. k = U {kx|xe xx}

T ser = AX. {x}
map2s,, = Mf xxyy. {fxy|xe xx,ye yy}

Definitions for ReaderT Monadic Layer

@ReaderTR(M) =R - @M

[iftT = Axx. Ar. xx

ft = liftT - 1,

XX >>= K= Ar. XX r>>= AX. KX r

Auxiliary functions for ReaderT: ask : El ;ask = 1y,
localshift : (R = R) = @ — @ ; localshift = Nf xx. xx o f

When M = |dentity: XX >>=pooqerr K= Ar. let X =xxr;yy=k xinyyr
ﬂ ReaderR — M' Ar' X

Map2g.aderr = M XX yy. Ar. f (xx 1) (yy r)

Definitions for StateT Monadic Layer

@StateTS(M) =85 - M

[iftT = Axx. As. map,, (AX. (X, S)) Xx

ft = liftT - 1,

XX >>= K = AS. XX § >>=, A(X, 8’). k x 8’

Auxiliary functions for StateT: get : ;get =As. 1, (s,)

modify : (S = S) = ; modify = M. As. 1, ((), fs)

When M = Identity: XX >>= g5 K= AS. let (x,8') = xxs; yy =k xinyy s’
ﬁ StateS — M' }\S. (X, S)

Definitions for WriterT Monadic Layer

@Wmeﬂw(w = M, where W is e.g., a list of logged messages
[iftT = Axx. map,, (AX. (X, [1)) XX

ft = liftT - f,

XX >>= K = XX >>=y A(X, ws). K X >>=, Aly, ws’). T (Y, ws <> ws')

Auxiliary functions for WriterT: tell : W — ; tell = Aws. Ty, ((), ws)
listen : @ - ; listen = AXX. XX >>= A(X, ws). Ty, ((X, ws), ws)
censor: (W = W) — |E| - |E| ; censor = Af XX, XX >>=, A(X, ws). T (X, f ws)

When M = Identity: XX >>= yier w K = l€t (X,ws) = xX; (y,ws’) = k x in (y, ws <> ws’)
ﬁWriterW =)\X. (X, [])

Examples of Using (Simple, Single-layered) Monads
1. Safe division (CB, using Maybe monad)

2. + (JP, using Set monad)
* What is: (3 * v4) - V25, interpreting that as: (3 * +2) - £5?

> plusMinus x = [xX, -X] :: Set Int
> :type plusMinus
plusMinus :: Int -> Set Int

> map2 (*) (up 3) (plusMinus 2)

Set [-6,6]

> map2 (-) (map2 (*) (up 3) (plusMinus 2)) (plusMinus 5)
Set [-1,-11,11,1]

3. Variable binding (CM, using Reader monad)

4. Running tally (JP, using State monad)
* Suppose you're trying to use the State monad to keep a running side-tally of
how often certain arithmetic operations have been used in computing a complex
expression. You've settled upon the design plan of using the State monad, and
defining a function like this:

let counting_plus xx yy = tick >>= A_. map2 (+) xx yy
How should you define the operation tick to make this work? The intended
behavior is that after running;:

let zz = counting_ plus (up 1) (counting_plus (up 2) (up 3))
in runState zz 0

you should get a payload/at-issue result of 6 (that is, 1+(2+3)) and a final side-
tally of 2 (because + was used twice).

> let -- xx >> yy = xx >>= _ -> yy
tick :: State Int ()
tick = modify succ
counting plus xx yy = tick >> map2 (+) xx yy

zz :: State Int Float
zz = counting plus (up 1) (counting plus (up 2) (up 3))
in runState zz 0
(6.0, 2)

* Instead of the design in the previous problem, suppose you had instead chosen
to do things this way:

let counting_ plus' xx yy = map2 (+) xx yy >>= tock

How should you define the operation tock to make this work, with the same
behavior as before?

> let tock :: Float -> State Int Float
tock = \z -> modify succ >> up z
counting plus' xx yy = map2 (+) xx yy >>= tock
zz' = counting plus' (up 1) (counting plus' (up 2) (up 3))
in runState zz' 0

(6.0, 2)

